LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION – **STATISTICS**

THIRD SEMESTER - NOVEMBER 2018

16/17UST3MC02– ESTIMATING THEORY

Date: 31-10-2018 Time: 01:00-04:00 Dept. No.

Max.: 100 Marks

Answer ALL the questions:

Part – A:

(10x2=20)

- 1. Define unbiased estimator. Give an example.
- 2. State any two regularity conditions.
- 3. State any two properties of UMVUE.
- 4. When $X_1, X_2, X_3, \dots, X_n$ is random samples from Poisson distribution with parameter λ , suggest a sufficient statistic.
- 5. Explain the Method of Moment estimation.
- State the least Square estimator of β_0 , in the model $Y = \beta_0 + \beta_1 X + \varepsilon$. 6.
- 7. What is a prior distribution? Give an example.
- 8. State a possible prior distribution for λ
- 9. State the 95% confidence interval for μ , when a random sample of size 'n' is drawn from N (μ ,1).
- 10. With $\alpha_1 < \alpha_2$, which of the two confidence intervals $(1-\alpha_1)100\%$ and $(1-\alpha_2)100\%$ is wider?

Part – B

Answer any FIVE questions:

- 11. Derive an unbiased estimator of 'p' in Bernoulli distribution B (1,p), based on a random sample of size 'n'.
- 12. Describe efficient estimator with a suitable example.
- 13. Define completeness of an estimator and verify whether \bar{x} is a complete estimator in case of a random sample of size 'n' from $N(\theta, 1), \theta \in R$.
- 14. Describe the Method f minimum Chi square estimation.
- 15. State any four properties of MLE.
- 16. Describe Loss function and Risk function with suitable example.

(5x8=40)

17. Describe posterior distribution? Give an example of a prior and posterior distribution.

18. Derive the 95% confidence interval for θ , when a random sample of size 'n' drawn from N (μ , σ^2), $\theta \in R$, where σ^2 is unknown.

Dont		\mathbf{C}
Part	-	

Answer any TWO Questions:	(2 x 20=40)	
19. a) State and prove Cramer – Rao inequality.	(12)	
b) Show that the family of Poisson distribution $\{P(\lambda), \lambda > 0\}$ is complete. (8)		
20. a) State and prove Lehmann – Scheffe theorem.	(10)	
b) State and prove Rao – Blcakwell theorem.	(10)	
21. a). Explain the concept of estimation by the method of modified minimum chi-square.		
	(10)	
b) For a random sample of $X_1, X_2, X_3, \dots, X_n$ from N (μ, σ^2), $\sigma > 0, \mu \in \mathcal{R}$, obtain the method of		
moments estimator of μ and σ^2 .	(10)	
22. a) Let $X_1, X_2, X_3, \dots, X_n$ be random sample from {P(λ), $\lambda > 0$ } }, and let Gamma (α, β) be prior		
distribution for λ . Obtain the Bayesian estimator for λ .	(12)	
b) If $X_1, X_2, X_3, \dots, X_n$ and $Y_1, Y_2, Y_3, \dots, Y_m$ are random sample of size 'n' and 'm'		
respectively from N (μ_1 , σ^2) and N (μ_2 , σ^2). Derive the (1 - α)100% confidence interval for the		
differences in means μ_1 - μ_2 .	(8)	
